氦液化器末级换热器的热力特性

更新日期:2012-11-14

    末级换热器的特性与工质的热物理性质及工况有关。它的温度和压力工况,通常可根据氦液化循环的预冷方式及实践经验来设定。末级换热器低压通道氦气进口温度T3(对应图1中点3)是由液氦饱和压力决定的,一般范围为3.7~4.5K。高压通道氦气进口温度T1(对应图1中点1)取决于前级的预冷方式。
    由于节流制冷量近似等于该处的等温节流效应,T1越低,则制冷量或液化率就越大。为了保证一定的制冷量或液化率,T1通常设计在10~14K。高压通道出口温度T2(对应图l中点2)即节流前的温度,对制冷量或液化率有直接影响,从氦的温熵图[4]来看,3.7~4.5K范围内的饱和气体线几乎与30.9J/g的等焓线相重合,该等焓线的转化点[微分节流效应(эT/эP)h=0]为7.8K,因此,T2必须低于7.8K,才能使氦气液化,实际上T2常低于6K。低压通道出口温度T4(对应图1中点4)取决于末级换热器热端温差的大小,为了提高换热效率,这个温差一般选得很小,常在lK以下,甚至只有0.3K。由此可见,氦液化器末级换热器的显著特点是工作温度很低和传热温差极小。
    
    关于末级换热器的工作压力,低压通道的流动阻力一般很小,若略去不计,则低压侧压力PL等于液氦的饱和压力。通常在0.1MPa左右。高压侧压力PH,可以根据高压通道进口温度T,来设计,即取为转化温度等于T1时的转化压力,这样,高压氦气进口状态点(T1、PH)将位于温压图的转化曲线上。例如T1=9.5K, 则几取为18.5MPa。如图2中的a点。a点的焓值应是T1温度下的最小值,对应的等温节流效应最大,可称为最佳压力。对于常规的非阻力型末级换热器来说,由于高压通道的流动阻力也不大,因此,按T1选择的最佳压力就不可能也是出口温度T2对应的最佳压力。
    
    例中,若略去高压通道流动阻力,当T2=6K时,则出口状态点b将落在转化曲线右下方的24.0J/g等焓线上。一个值得研究的问题是,若能在高压通道内设置分布阻力,使出口压力降到6K又;f应的最佳压力0.75MPa,那末出口状态c点将落在20.4J/g等焓线上,使节流前焓值减小3.6J/g,意味着节流后单位制冷量增加3.6J/g。若换一个角度看,假设高压氦气的放热量不变,出口焓值保持24.0J/g,而分布阻力使出口压力降为1.0MPa,仍使其位于转化曲线上。那末,出口温度T:将等于6.6K,使出口传热温差增加0.6K(对此类换热器已很可观),因而传热面积可以减少。
    上述分析未涉及传热系数因设置分布阻力而引起的变化。实际上,没置分布阻力后,由于气流速度和扰动的增加,是有利于传热系数提高的,所以不会产生负面影响,总之,只要在氦液化器末级换热器高压通道内设置合理的分布阻力,就可能提高液化率或制冷量。这并不违背热力学第二定律。因为从局部看。设置分布阻力会引起熵增,使不可逆损失增加,但与此同时,未级换热器后节流阀的节流程度必须大大减小,否则无法保持节流后的压力PL不变,所以节流阀的熵增是减少的,从总体看,两部分的总熵增不是增加了,而是减少的。


    相关阅读:
板式换热器常用的八种板片材料 
              
换热器按照传热方式如何分类 
              
波纹管换热器四大特点


    编辑:黄黄
    说明:文章出自本站,未经许可不得转载,如要转载请注明文章来源。
    电话:010-84478229
    邮箱:
service@360bhe.com